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ABSTRACT

Mathematical models used to predict plasma volume responses to
hemorrhage and fluid resuscitation must consider both fluid and solute
exchange across the capillary wall. In this paper, we review four models of
transcapillary exchange that might be incorporated into a compartmental
model for plasma volume prediction. The simplest of the four
transcapillary flux models, attributed to Kedem and Katchalsky (1958),
assumes a discrete capillary wall structure, ideal solutions, and capillary
wall homogeneity. The remaining models become progressively more
complex by successive elimination of these three assumptions. To assess
their effects on whole-body plasma volume predictions, the four models of
transcapillary exchange were incorporated into a simple two-compartment
(blood and interstitial space) model. Next, plasma volume predictions
were generated for the following simulation conditions: 1) instantaneous
25% loss cf blood volumnz, 2) i:-santaneous 50% iucrease in plasma NaCI
concentration, 3) instantaneous 50% increase in plasma albumin
concentration, and 4) instantaneous 25% loss of blood volume with a 50%
increase in plasma NaC1 concentration. Plasma volume predictions,
generated by the four models, were indistinguishable over these simulation
conditions. From these results, we conclude that the simplest of the
transcapillary flux models may be used for predicting plasma volume
responses to hemorrhage and resuscitative fluid administration.

keywords: model, hemorrhage, fluid resuscitation, transcapillary exchange
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A Mathematical Model for the Study of Hemorrhagic Shock and Fluid
Resuscitation: Transcapillary Exchange -- Tammy J. Doherty

INTRODUCTION

One of the most important recovery mechanisms following loss of
blood volume is the transfer of fluid across the capillary wall from the
interstitium (subscript I) to the capillary (subscript C). According to
Starling1, the forces that govern transcapillary fluid movement are the
hydrostatic (P) and osmotic (II) pressure differences across the capillary
wall. Landis2 showed that the rate of fluid movement from capillary to
interstitium (J,) is approximately proportional to the difference between
these capillary (subscript C) and interstitial (subscript I) pressure
differences (Box 1):

iv = k [(Pc - PI) - (T1c, - 11r)]

When capillary hydrostatic pressure falls due to loss of blood volume, fluid
movement into the capillary space increases, helping restore lost volume.
This "autoinfusion" dilutes the blood (lowering osmotic pressure) and
causes capillary hydrostatic pressure to increase. Eventually, a new balance
of hydrostatic and osmotic forces is reached and transcapillary flux returns
to normal levels.

Pre-hospital management of hemorrhagic shock consists of: 1)
establishing hemostasis, and 2) replacing lost blood with a fluid substitute.
Because whole blood is oftentimes unavailable, lactated Ringer's solution,
which has the same osmolarity as normal plasma, is frequently used as a
fluid substitute. Fluid and solute components of lactated Ringers solution
distribute throughout the interstitial as well as the vascular spaces.
Consequently, it takes three or more liters of lactated Ringers solution to
replace one liter of shed blood. When large quantities of blood or
isosmotic fluid are unavailable, a small volume of a hyperosmotic solution
may be used to expand plasma volume using the body's own autoinfusion
mechanism. Capillary permeability to the solutes in the resuscitative fluid
determines the duration of the osmotic pressure differential across the
capillary wall. A hyperosmotic solution made up of highly permeable
solutes (e.g., NaCl) will have only a short term effect compared to solutions
made up of less permeable solutes (e.g., albumin, dextran, hetastarch),
which stay in the blood space longer. For these reasons, the dynamics of
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both solute and solvent must be considered when interpreting
cardiovascular responses to hemorrhage and fluid resuscitation.

The Landis-Starling Equation (Equation 1) does not account for the
permeability of solutes. Transport equations that account for permeability
of both solute and solvent generally fall into one of two classes:
phenomenologic equations based on irreversible thermodynamics, or
mechanical (hydrodyn., ric) equations based on either "pore" or "matrix"
theory. The models in these two classes differ mainly with respect to the
definition of model coefficients: the forms of the transport equations are
otherwise similar. Consequently, models may be characterized by the
simplifying assumptions used in model development, rather than in the
theory used to develop equations.

It is difficult to determine, on the basis of model descriptions, which
model or set of model assumptions is necessary or sufficient for application
to the problem of hemorrhage and fluid resuscitation. The simplest
transport model, attributed to Kedem and Katchalsky3 has been criticized
because it incorporates assumptions of a thin, homogeneous capillary wall,
and ideal solutions made up of small particles. In this paper, we review
the Kedem-Katchalsky model as well as other, less restrictive models. The
purpose of this endeavor is to identify the simplest model for predicting
whole-body, net transcapillary fluid and solute exchange in response to
hemorrhage and/or resuscitation fluid administration.

MODEL DESCRIPTIONS

Phenomenologic models based on irreversible thermodynamics were
first introduced by Kedem and Katchalsky3 in 1958. The model they
developed assumes a homogeneous, discrete membrane structure, and ideal
solutions composed of a single type of small solute particle. Several
models have been developed to address perceived shortcomings in the
Kedem-Katchalsky model. These include a model developed by Patlak4 in
1963, which uses a continuous membrane model, as well as Katz' model5 ,
developed in 1985, which assumes non-ideal solutions. The basic pore
theory model, described by Curry6, also incorporates a continuous
membrane model and non-ideal solutions. In addition, the pore theory
model readily accounts for large solute molecules and multiple pathways
for solute and solvent transport. To better understand the effects of model
assumptions on flux equations, three models based on irreversible
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thermodynamics (i.e., the Kedem-Katchalsky, Patlak, and Katz models), as
well as the basic pore theory model, are reviewed below.

The Kedem-Katchalsky Equations
In models based on irreversible thermodynamics, the rate of entropy

production (dS/dt) on one side of the membrane is defined in terms of
chemical potentials (g). This equation is then used to generate coupled
total volumetric and solute flux equations. Models differ with respect to
the form of the entropy production equation (discrete versus continuous)
and with respect to simplifying assumptions used in estimating chemical
potentials. In the Kedem-Katchalsky model, the rate of entropy production
for the interstitial compartment is given by:

dS, I A dN", + 1 1d (2)

dt T dt T d

where T is temperature, t is time, N is the number of moles of solute
(subscript s) or water (subscript w), and the A operator represents capillary-
interstitial differences. For convenience, the variable I, is defined as:

0= -TdS (3)A dt -z .i. ,• 3

where A is the membrane surface area and ; is defined by:

fi -I , (4)A dt

For an ideal solution, the chemical potential difference (,) is defined in
terms of hydrostatic pressures (P), molar volumes (V), and partial molar
fractions (-):

AL = VAP + RTAIn(y) (5)

where R is the universal gas constant and the partial molar solute fraction
is defined by:

DiS (6)
n. + nw

Assuming a dilute, binary solution, (i.e., rný4rn and n + n-ni), -, may be
approximated by the term (nn./) and solute concentration (C.) by the
term (n/V.n,). Using these approximations, Aln(CQ) may be substituted
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for Aln(-y,) in Equation 5, and the solute chemical potential difference
across the membrane becomes:

V, = VAP + RTAln(C,) (7)

In their paper3, Kedem and Katchalsky rewrite Equation 7 in the following
form:

Aý,= VAP + RT C" (8)

where (c is defined by:

,- AnC, (9)

To jetermine the corresponding equation for the water or solvent chemical
potential difference, In(y,) is represented by ln(1-t./) which, for small -Y, is
approximately equal to --f. Again assuming dilute, binary solutions (i.e.,
n+ n,,=n,- and Ca-n,/Vn,,), the expression for the water chemical potential
difference becomes:

A Vw= VwAP - RTVwAC, (10)

Substituting the definitions of Ag, and A,, from Equations 8 and 10 into
Equation 3 and rearranging terms yields:

% = (h.V.+ 4iVs)AP + - 1wV,1 RTAC_ (II)

Equation 11 may be simplified by adding and subtracting the term
nSVSRTACs, by substituting J,, for the tern- (k1V. + fk.VW), and substituting
All for the term (RTACQ):

4V =J,,(P- Ar) + JV(l + )JuII (12)

By the rules of irreversible thermodynamics7, any equation for the rate of
entropy generation of the form of Equation 12 (i.e., sums of fluxes
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multiplied by their own driving forces) may be recast in the form of exact
coupled flux equations as follows:

J,= IIAP- AI) + L12 ( I 1)l (13)

.J V v =L21 (&P 11Af) + LZ2(1 el. ~ (14

An expression for (AP-AII) may be obtained from Equation 13 and
substituted into Equation 14 to yield:

jSV L1 L, + I )-AUl) + L22(I+. ~AU (15)

By assuming that -12 = ;1- (Onsager's reciprocity law), that All = RTACS
(van't Hoff s law for ideal solutions), and that C,V,-0 for small particles in
dilute solution, Equations 13 and 15, after rearranging terms, become:

J, = k,[AP - OAUI] (16)

J, = kA C, + (1-a)JC 5  (17)

where:

kv -LI, (18)

y = I - L + 19)

•~~1 • mm
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k's= L-22L1(1+ (20)

Equation 16 is similar to the Landis-Starling Equation (Equation 1) but

includes an "osmotic reflection coefficient" (o), defined as the fraction of

the osmotic pressure, that would be manifest across an ideal,
semipermeable membrane, that is manifest across the non-ideal capillary
wall8 . From this definition, a= 1 when the membrane is impermeable to

solute, and a-0 when the membrane is highly permeable to solute. A

summary of the Kedem-Katchalsky Equations, extended for a system of

multiple, non-interacting solutes, is presented in Box 2.

The Patlak (nonlinear) Equations
A major assumption used in the Kedem-Katchalsky formulation is

that the capillary wall is thin enough to represent pressure and
concentration gradients in discrete form. This assumption has been shown

to be invalid unless the rate of solvent flux is very small4' 9-1 . Patlak4 was

the first to reformulate the solute and solvent flux equations using a
continuous membrane model:

.4 = k[. a~ - o (21)

is -kw--dC" + (1 -o)JC, (22)
dr

where x is a point along the transport pathway, and w is the total distance

across the capillary/interstitial membrane. Assuming t.at k, k,, and a are

constant (i.e., independent of C, and x), and that a steady state is obtained

(i.e., J, and J, are independent of time and distance, x), then integration of

Equations 21 and 22 leads to the following solutions for J, and J,:

J, = k,(AP - cAn) (23)

(-)J(Cc-C, e (24)
(1 - e

where Pe, a form of the Peclet number, is defined as:
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Pe - )(25)

Equations 23-25, extended to a system of multiple, non-interacting solutes.
are presented in Box 3.

Equations for non-ideal solutions
Both the Kedem-Katchalsky and Patlak equations assume that the

solutions on the two sides of the membrane are ideal. Katz5 rederived the
transport equations using a continuous membrane model, assuming non-
ideal solutions. As in the Kedem-Katchalsky derivation, Katz begins his
derivation by defining a variable I which is the rate of entropy production
multiplied by temperature and divided by membrane area. Because Katz
assumes a continuous membrane, the expression for ' differs somewhat
from the expression used by Kedem and Katchalsky (see Equation 3):

TdS .dji,. dpi, (26)
A dt W"

where fi is defined as in Equation 4. Katz uses a general expression for
chemical potential:

Ii = VP + RTIn(a) (27)

in which a is the "chemical species activity", rather than the more restrictive
definition used by Kedem and Katchalsky (Equations 5-10). Taking the
differential of both sides of Equation 27, it is possible to write:

dg,_ dP din(a_ ) (28)-,X = --Ij + R T -d -- 28
dxw din(a)

= Vw dP + RT d. (29)
d W dx dx

Substituting these definitions of du/,dx and dpA,/dx into Equation 26 and
rearranging terms yields:

=P + A + dl a T (30)
dx dx w
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Adding and subtracting the term:
jis, V, R T d ln(a.) (31)

V,, dx

to and from the right side of equation 30, substituting J, for the term
(A1V,+ k.V,), substituting J, for the term (k ), and regrouping terms yields:

_dRdP R T dln(.,,,] + JVs RT dln(a,)d( - ,RT dnfa") (32)

In an isothermal, noncontractile, isoelectric system with N., moles of water
and Ns moles of solute, the Gibbs-Duhem equation5 states:

-VdP + E Nidg1 = 0 (33)

or, in the present case:

-(nV,+nyV)dP + n,([VdP +RTdln(a,,)] + n.[V dP +RTdln(a,)] 34)

The dP terms in Equation 34 drop out, leaving an expression for din(a,) as
a function of dln(a,):

nw

dln(a3 ) = - fdln(a,) (35)
n,

Substituting this expression for dln(a,) into Equation 32 and rearranging
terms yields:

-b = dJd dP + R T + J. V3I+nVw _R T d ln(a_) (36)

iRTdh() +VJwV( 2&r111 I -- (36)

Katz defines the osmotic pressure differential as the hydrostatic pressure
gradient that must be applied to a system to maintain that system in
equilibrium when a chemical potential gradient exists5:
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dfI _ __RT dln(a.) (37)

Using this definition, we may rewrite the expression for +I (Equation 36) in
terms of 11:

0 -P_ I + i nv5 (i+ŽIj• (38)

By the rules of irreversible thermodynamics 7, any equation for the rate of
entropy generation of the form of Equation 38 (i.e., sums of fluxes
multiplied by their own driving forces) may be recast in the form of exact
coupled flux equations as follows:

J L = LI L - + L12 (1 + (39)

J=VP IT +• •- - L,(1+ n-V.]dJd (40)

Using the same procedures, as in the Kedem-Katchalsky derivation, these
equations may be simplified to:

J,i. k"w d _0 ,-dI (41)

Jc = 'M dIW + a 2j" (42)

where:

k- L= l (43)
w
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1- 1 (+ (44)
L 11  n$ )

L(I

a.= (46)L11 V$

The solution for Equation 41 is straightforward and is identical to the
Patlak solution (Equation 23). To solve Equation 42, Katz5 rewrites the
equation in terms of solute concentration, using a third order polynomial to
express osmotic pressure as a function of solute concentration:

fl~a 1 ,+a2C+a 3C(47)19 = a, C, + % C$ + a3 C. 4

Taking the derivative of both sides of Equation 47 with respect to C,
results in the following relationship between dlI and dC,:

dil = (a, + 2a 2C, + 3a3C.,2)dC$ (48)

Katz substitutes this expression for dlI into Equation 42, resulting in the
following expression for J1 in terms of C,:

Js = acw(a, + 2a 2 C, + 3a3c2) deC + a2J, (49)
dx

to solve this equation, Katz assumes that the a, term is concentration-
dependent:

a 3

1+ L3 (50)
C.

and that the a2 term is concentration-independent. Using these
assumptions, it is possible to solvc Equation 49:
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J, = [b0,& (ICn,)) + b1A(C,) +bt&(C) + b3 A(C,;)] + (%',,2

where, the bi terms are functions of *3 and a1 terms, and as before, the
symbol A represents capillary-interstitial differences.

Unfortunately, the assumptions of constant a, and concentration-
dependent a2, used to solve Equation 49, contradict accepted notions of
concentration independence for the coefficient of diffusion (related to a,)
and concentration-dependence of the convective transport coefficient (%),
which is usually represented by the product of the solute concentration
(C5), and a "slip" coefficient (e.g., 1-a in the Kedem-Katchalsky solution).
Because there is no apparent basis for the assumptions used by Katz, an
alternative solution is presented below.

To begin, an expression for J, is derived from Equations 39 and 40
using the coefficients wo and a:

- 4 + (1-o)JC, (52)

where:

wV LI, n, V

and a is defined as in Equation 44. Substituting the expression for dfl from
Equation 48 into Equation 52, and solving the resulting differential
equation yields the following equation relating solute concentration, solute
flux, and total volumetric flux:

2a2J, 3aJ", Js+2~q+ aa2al j + bSI J,
(a, + 1n - b + 2%2AC3 + 3a 3 AC4,e,+ b~

b C,,c - i
b

(54)

where:
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b =(1--o)J, (55)

CS c,.c +cS, (56)
2

An approximate solution for J, from Equation 54 may be obtained using
numerical search techniques. The new non-ideal flux equations (i.e.,
Equations 41 and 54), extended to a system of multiple, non-interacting
solutes, are presented in Box 4.

Pore Theory
The first discussion of pore theory is attributed to J.R.

Pappenheimer' 2. Since that time, numerous descriptions of hydrodynamic
flow through pores traversing the capillary wall have been published. In
this review, we assume that both water and solutes (approximated by rigid
spheres) are transported across the capillary wall through cylindrical pores.
The conceptual model by Anderson and Malone 13 (Figure 1) is used to
estimate both solvent and solute flux through these pores. The distance
from the center of the pore to the wall is rp, and the radius of the solute
molecule is r.. To determine the solute concentration at any location
within the pore, the centers of the solute molecules, within the region
bounded by x+Ax, are counted. Because the solute molecules are of finite
size, the centers of the molecules are prohibited from the region adjacent
to the pore wall. Thus, the capillary pore may be divided into a zone near
the pore axis (i.e., the "core region"), in which solute is free to move
(0< r<rP-r,), and a zone near the pore wall (the "exclusion region"), in which
the solute concentration is zero (r,-qr < r < rP).

A key assumption in this model is that of radial equilibrium.
Hydrostatic and osmotic pressure gradients are assumed not to exist in the
radial (r) direction except across the imaginary boundary at r= rs-r. Thus,
the hydrostatic and osmotic pressures at any point in the "core" region, at
distance x along the pore, may be expressed by the hydrostatic and osmotic
pressures at the pore axis (P(x) and rl(x), respectively). Because the solute
concentration in the exclusion region is zero, the osmotic pressure in that
region must also be zero. Across the imaginary boundary at r = r,-r., the
driving force for solvent flow is the difference between hydrostatic and
osmotic pressures. Therefore, the hydrostatic pressure in the exclusion
region equals P(x)-lI(x).
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Using these results, i.e., that the hydrostatic pressure in the core
region is P(x), and the hydrostatic pressure in the exclusion region is [P(x) -
lI(x)], it is possible to write simplified Navier-Stokes Equations for the core
and exclusion regions, separately:

dPid ,r•.- (57)
dx rTr dr)' O Pr~r,-r(

dP dII _ q rdvl r - r<rsr (58)
dx dx rdrI,( drj 0'

where 1r is fluid viscosity. By separating Equation 58 into hydrostatic
(subscript P) and osmotic (subscript I1) pressure components:

dP ild (rdvp,,' r - r.Y ~r f.r (59)
dx r dr dr)

dnl _ u d (r dvnT] rp -r5<r r (60)
dx r drl dr)'

it is possible to generate equations (using Equations 57, 59, and 60) that
describe the effects of hydrostatic pressure over the entire pore region
(Equation 61), and osmotic pressure in the exclusion region (Equation 62):

dP d (rdvp),] r.r (61)

dx r dr dr)'

d l d r dV' rp -r<r r (62)
dx rdrt dr)' ) SIP

The solute velocity due to hydrostatic pressure may be obtained by
integrating Equation 61 twice with respect to r, applying the boundary
conditions: 1) dvp/dr=O at r=O, and 2) vp=O at r=rp:
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(2 _2(r -p) dP (63)
'F 4q dx

Similarly, velocity due to osmotic pressure in the exclusion region may be
obtained by integrating Equation 62 twice with respect to r, applying the
boundary conditions: 1) v 1--0 at r-rp-r, and 2) vr =0 at r=r,:

- -(r2 - r2) (n + V-r,)' dI (64)v,,: n k-[ d In~r) -tn~rp)] (4
41q - Z 2qi dx

The solvent flow through the pore (Jp,) is obtained by integrating each
velocity term over the appropriate pore area:

<,= fv,2,rdr + f v112rdr (65)
0 "P-r.

Solving these integrals and grouping terms yields an expression for solvent
flux in terms of pressure gradients, and pore and solvent radii:

JI" - -d, L ( ))2d I(6

where ).= rj/r,. Equation 66 may be expressed using the coefficientf 1v
and a as follows:

where:

4

k tr. (68)
8ilw

o =(1 -(1 -_ )2 )2  (69)

The volumetric flux equation, extended to a solution of multiple, non-
interacting solutes, is presented in Box 5.

Equations describing solute flux through capillary pores use the
same geometric model as that used to describe solvent flux (Figure 1). For
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simplicity, total solute flux is divided into pure-diffusion and pure-
convection components. To determine the rate of pure solute diffusion
(assuming solvent flux is zero), a small cross section of the pore, of
thickness dx, is considered6 (Figure 2). Because the centers of the solute
molecules are restricted from the area close to the pore walls, the effective
area for diffusion (A•.P) includes the central area of the pore out to a
radius of rp - r.. The cross-section is considered to be bounded upstream
and downstream by semipermeable membranes. A difference in solute
concentration across the section leads to a difference in osmotic pressure
(dli). If unopposed, this osmotic pressure gradient causes water to flow
from one side of the section to the other. In a closed system, this osmotic
pressure gradient is associated with movement of the cross section in the
opposite direction. To prevent movement of the segment and to maintain
the osmotic pressure gradient, a force must be exerted on the segment
contents to prevent osmotic flow. Thus, each solute molecule within the
section is considered to be acted upon by a pressure force (Fn ) of
magnitude:

Fn - d (70)
NAC, dx

where the solute concentration within the section is Cs, and NA is
Avagadro's Number. In a system with constant velocity, this force must be
balanced by the drag on the solute molecule caused by solute-solvent
interactions and interaction with the pore wall. Faxen14 determined that
the appropriate drag force, which accounts for the presence of the pore
wall is:

- 6nnrv, (71)
FD - (7f

where -67rnrrvs is the Stoke's drag force for a sphere in an unbounded fluid,

and f,,p is a correction coefficient for the presence of the pore walls:

= I - 2.104433A. + 2.08877)P3 - 0.948131' - 1.372 X6 + 3.87 X1 - 4.19X"Ia

(72)

At constant velocity, F11 equals FD. Setting the right side of Equation 70
equal to the right side of Equation 71 and solving for v, yields an
expression for solute velocity when volumetric flow is zero (i.e., pure
diffusion):
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(,= NA C,61rl,..- (73)

Total solute flux due to diffusion for the single pore (JPdidf) is obtained by
multiplying v, diff by the number of moles of solute at the pore cross-section
(C, r(r-r 5)2). 'After simplification, JsAi is expressed by:

It,(rP )NA 6 nilr-f dx (74)

To determine the rate of pure convective solute transport (assuming
concentration gradients equal zero) in a single pore, we assume that the
center of a neutrally buoyant sphere, suspended in a Poiseuillian flow,
translates along a streamline of the undisturbed flown. The velocity of
such a solute molecule, located at a distance r from the pore axis, is the
same as the Poiseuille fluid velocity (vf) at that point:

vo,,(r) = vf(r) = 2(1 - 2. (75)

where •f is the average fluid velocity within the pore cross-section.
Convective solute flux for the pore is obtained by integrating solute velocity
over the pore area bounded by r=O and r=rp-r•, and multiplying by solute
concentration:

J C€oaw = v ,,,., 2irdr (76)
0

Substituting the right side of Equation 75 for v,,c solving the integral and
simplifying terms yields an expression for the convective solute transport in
a single pore:

wher(1e aa2in(,_ X)2] (77)

where, again, A, is rj/rp.
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Total solute flux (convection plus diffusion) for a single pore is
obtained by adding Equations 74 and 77, substituting A 1,, for the term w(rp-
rj), and substituting J, for the term Vrrp2:

jS' ( -= sra d I CJ,,(l1-•)2 [2 - (l- A)2] (78)

Equation 78 may be rewritten in a form similar to the non-ideal solute
transport equation (Equation 52) by regrouping terms:

Jr =f -caow dII + X CrJv•, (79)
dx

where:

&c=Ai.( NA6sir4w) (80)

X = (1 - ).)2 [2 - (1 - 1) 2] (81)

The solute transport equation, for a solution of multiple solutes, is
presented in Box 5.

MODEL COMPARISONS

The choice of model equations for transcapillary flux depends upon
the application. Although the Kedem-Katchalsky model has been criticized
as being too simplistic, this criticism may not apply to studies of whole-
body net transcapillary flux. To assess the effects of different model
assumptions on predictions of plasma volume response to hemorrhage and
fluid resuscitation, a simple two compartment model was devised.
Constants and initial conditions for this model are provided in Table 1.
Model compartments, representing the vascular and interstitial fluid spaces,
were considered compliant and well-mixed. Hydrostatic pressures were
estimated from compartment volumes as follows:
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Pc = -. 91(V6- VB,) + PcO (82)

P, = 0.01042(V1 - V10) + P/0 (83)

where VB is the total blood volume, V, is interstitial volume, and the
subscript 0 denotes initial values. For simplicity, it was assumed that
plasma and interstitial fluids were made up of water, NaCI, albumin, and
globulin. At body temperature, the osmotic pressure for NaCI (subscript s)
is approximately:

II, = (31.877)(19330)Cs (84)

where C, is the concentration of NaCI (g/ml), 31.877 converts grams of
NaCI to milliosmoles, and 19.33x10 3 is the osmotic pressure (mm Hg)
exerted by 1 mosm/ml of solute16. Cubic equations presented by Landis
and Pappenheimer17 are used to estimate partial osmotic pressures for
albumin (subscript a) and globulin (subscript g):

ha = 280C, + 180WC2 + 12000C3 (85)

I1g = 210(C + Cd) + 1600(C, + C) 2 + 9000(C' + Cg)3 - Ja (86)

where Ca is albumin concentration (g/ml) and Cg is globulin concentration
(g/ml).

Fluid, NaCl, and albumin exchange between the blood and
interstitial compartments was assumed to occur across the capillary wall, as
well as by lymph return (transport of globulin was neglected). Parameter
values for the flux equations were obtained by requiring that at normal
steady-state, total volumetric flux is equivalent to lymph return (0.02 ml.
kg1-. min'-), and that total solute flux is equivalent to convective solute
transport in lymph (interstitial concentration multiplied by normal lymph
flow rate). In addition, for models based on irreversible thermodynamics,
solute reflection coefficients were assumed to equal the values provided in
Table 2. Initial parameter values for the pore theory model were based on
reported values for solute"8 and pore19 radii identified in Table 3.

Because pore theory parameter values were not comparable to
parameter values for the models based on irreversible thermodynamics, it
was necessary to run two sets of comparisons. In the first set, we
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compared predictions generated by the three models based on irreversible
thermodynamics. There was no appreciable difference between predictions
generated by these three models in response to a simulated instantaneous
a) 25% loss of blood volume, b) 50% increase in plasma NaCI
concentration, c) 50% increase in plasma albumin concentration, or d) 25%
loss of blood volume with a 50% increase in plasma NaCl concentration
(Figure 3). Therefore, it was concluded that considerations of membrane
continuity and solution non-ideality are unimportant in predictions of
whole-body plasma volume response to changes in blood volume or plasma
osmolarity.

The second set of comparisons included a discrete, ideal form of a
two-pore hydrodynamic model (Box 6) and a two-pore parameter-averaged
model, identical in form to the Kedem-Katchalsky model (Box 2).
Parameter values for the two-pore model are provided in Table 3.
Averaged parameter values are provided in Table 4. The two models
generated nearly identical predictions of plasma volui-tie for simulation
conditions a) through d), above (Figure 4). These results indicate that the
effects of capillary wall nonhomogeneity may be accounted for using a
simple, parameter-averaged, phenomenologic model.

The response of the two-pore model to simulated changes in plasma
solute concentration or total blood volume (Figure 4) is much slower than
that predicted by models based on irreversible thermodynamics (Figure 3)
or that observed under laboratory conditions2°. Modification of pore sizes
(rsm<2.3 A, rjg=60 A) enables the two-pore model to achieve a slightly
faster response. However, this response is still much slower than that
predicted using models based on irreversible thermodynamics. It is
possible that extending the pore theory model to three or more different
pore sizes will enable the model to achieve more reasonable plasma
volume estimates. The models based on irreversible thermodynamics
already predict reasonable plasma volume responses, however, so the
complexity of a 3-or-more-pore model does not appear to be warranted.



DOHERTY -- 20

SUMMARY

"I Ale Kedem-Katchalsky equations3 make three assumptions which
might restrict their use for describing transcapillary flux: 1) that the
membrane is sufficiently thin to express concentration gradients in discrete
form, 2) that the solutions on either side of the membrane are ideal, and
3) that the capillary wall is homogeneous. Several investigators have
attempted to remedy these limitations by reworking the Kedem-Katchalsky
equations for the more general case of a relatively thick membrane (Patlak
model4), non-ideal solutions (Katz modelS), and capillary wall
nonhomogeneity (pore theory models6). The results of comparisons in the
previous section show, however, that plasma volume predictions, generated
by models incorporating different transcapillary flux equations, were
indistinguishable. Thus, the Kedem-Katchaisky equations, when
incorporated into a simple two-compartment model, are as effective as
more complex models for describing the plasma volume response to
hemorrhage and resuscitative fluid administration.
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Table 1. Initial conditions and parameter values for 2-compartment
(vascular and interstitial) model.

blood compartment

Blood Volume (BV) 70 ml/kg

Plasma Volume (PV) 38.5 ml/kg

Plasma NaCI Concentration (C.p) 0.0093 g/ml

Plasma Albumin Concentration (Ca.p) 0.045 g/ml

Plasma Globulin Concentration (Cg.p) 0.025 g/ml

Capillary Hydrostatic Pressure (Pc) 20 mm Hg

interstitial-tissue compartment

Interstitial Volume (IV) 140 ml/kg

Tissue Volume (TV) 350 mli/kg

Interstitial NaCI Concentration (C,,) 0.0093 g/ml

Interstitial Albumin Concentration (Cat) 0.016 g/ml

Interstitial Globulin Concentration (Cgl ) 0.0 g/ml

Interstitial Hydrostatic Pressure (PI) -0.223 mm Hg
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Table 2. Parameter values for models based on irreversible
thermodynamics.

assumed values

as 0.109

aa 0.94

ag 1.0

k. 35.71 ml~kg1 -min"i

I 100x10-8 m

calculated values

l_,p 0.0612 ml-kg'-lmin-'.mm Hg-'

ka 0.0103724 ml-kg•-lmin"1

Wa 2.238 x 10"5 g-kg'.-min1 -mm Hg-

I ______________________________________________I
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Table 3. Pore theory model parameter values for a system with two pore
sizes, large (subscript lg) and small (subscript sm).

assumed values

r,m 40x10 m

rg 200x10"8 m

r. I OX 1-8Mrs ~10xl0- m

ra 36x10 m

rg 56x10 m

calculated values

k•s.m 2.252 x 10"9 ml.kg"'.rmin"1

k,ig 9.970 x 10"' ml. kg-1. min"

k.,SM 5.602 x 10-12 mld1. kg"1.rain-'

ksig 1.409 x 10"1° ml.kg1 .min"'

ki.SM 0.0 ml. kg"1. min-'

kajg 4.0183x10-12 ml. kg-'. min-1

osin 0.01055

USjg 0.0005229

Oa.sm 0.9401

Oaig 0.1073

Ogsm and agig 1.0

XsIsm 0.9894

Xs.ig 0.9995

Xa.Sm 0.0598

XaIg 0.8927

ni.m 11270160

ng .1111
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Table 4. Flow-averaged parameter values for the one-pore model

0.0264855 ml.kg" .min 1

k. 6.32948x10"5 ml.kg"1 .rmin-1

ka 4.464988x10"9 ml.kg'.min-1

or, 0.0103229

0a 0.9053186

.or 1.0
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Box 1. Landis-Starling Equation

eQuatiQn assumptions

Membrane is:
"I= k[(P. - P) - ( - )1) Freely permeable to small solutes

2) Non-permeable to proteins.
I] represents protein oncotic pressure

Box 2. Kedem-Katchalsky Equations extended to a system of multiple,
non-interacting solutes.

equations assumptions

J, = kAP - E ,A14 Constant T and P

Negligible solute volume fractions
Thin membrane
Ideal solutions

Js = ks &C5 + (1-os)d 3  Constant partial molar volumes

Ac,
' alnC,)
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Box 3. Patlak Equations extended to a system of multiple, non-interacting
solutes.

euationsassumption

Constant T and P
, k,[AP -~ GA] Negligible solute volume fractions

Ideal solutions

dC Constant partial molar volumes
J = - kw-o,), Homogeneous membrane

dx I., W, and a. are independent of C,

Box 4. Continuous model with considerations for non-ideality extended to
a system of multiple, non-interacting solutes.

equations assumptions

J= k4AP - E Constant T and P
"Constant partial molar volumes
Homogeneous membrane

i1, =- , -d + (1-,a,)JC,
dx
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Box 5. Basic pore theory model extended to a system of multiple, non-
interacting solutes.

equations assumptions

Jr,, =k"', [AP - y] °4, Al,3 ] Non-interacting solute molecules

Navier-Stokes flow

drll Cylindrical pore
J!, + Xt'Pw -- V + Solutes do not affect solvent flow

4
k V. Erp

= (I _ (I _ . ) 2)2

v = A,. ( NA6 7tir~w

X.fP = (1 - •'P,)2 [2 - (1 - 1,.,) 2 1
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Box 6. Discrete, ideal pore theory model.

Sassumptions

Non-interacting solute molecules

1 =Navier-Stokes flow
,,P- 2 ophfl] Cylindrical pore

Solutes do not affect solvent flow
Ideal solutions

jJ'P = k., AC, + X,/•Jd Thin membrane

kVP 81lw

U ='P (I - (1 -; X)2)2

NA65 n N j 2 rw)

V = (I - ;.,,)2 [2 - (1 - A.•P)
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Figure 1. Pore transport model similar to that described by Anderson and
Malone

dx

xi,+ dli,

Figure 2. Hydrodynamic model for diffusion (adapted from Curry6).
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Figure 3. Plasma volume predictions generated by the three models based
on irreversible thermodynamics.
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